

$$11. \lim_{n \rightarrow \infty} \sum_{k=1}^n \left[2 + \frac{3}{n}k \right]^2 \left(\frac{3}{n} \right) =$$

(A) 13 (B) $\frac{125}{3}$

(C) 39 (D) 125

43. If $f(x) = e^x \ln x$, then $f'(e) =$

(A) $e^{e+1} + e^e$

(B) $e^{e-1} + e^e$

(C) $e^e + e$

(D) $e^e + \frac{1}{e}$

5. What is the radius of convergence for the power series $\sum_{n=0}^{\infty} (3x - 5)^n$?

(A) $\frac{1}{3}$

(B) $\frac{2}{3}$

(C) 1

(D) $\frac{5}{3}$

9. Let a_n , b_n , and c_n be sequences of positive numbers such that for all positive integers n , $a_n \leq b_n \leq c_n$. If $\sum_{n=1}^{\infty} b_n$ converges, then which of the following statements must be true?

- I. $\sum_{n=1}^{\infty} a_n$ converges
- II. $\sum_{n=1}^{\infty} c_n$ converges
- III. $\sum_{n=1}^{\infty} (a_n + b_n)$ converges

- (A) II only
- (B) III only
- (C) I and III only
- (D) I, II, and III

22. The Taylor series for $\frac{e^{2x} - 1}{x}$ centered at $x = 0$ is

(A)
$$\sum_{n=1}^{\infty} \frac{2(x)^{n-1}}{n!}$$

(B)
$$\sum_{n=1}^{\infty} \frac{2^n (-x)^{n-1}}{n!}$$

(C)
$$\sum_{n=1}^{\infty} \frac{2^n (x)^{n-1}}{n!}$$

(D)
$$\sum_{n=1}^{\infty} \frac{2^n (x)^{n-1}}{(n-1)!}$$

41. The graph of the third-degree Maclaurin polynomial for $\sin(x)$ intersects the graph of $y = x^2 - 1$ at approximately

(A) 0.879

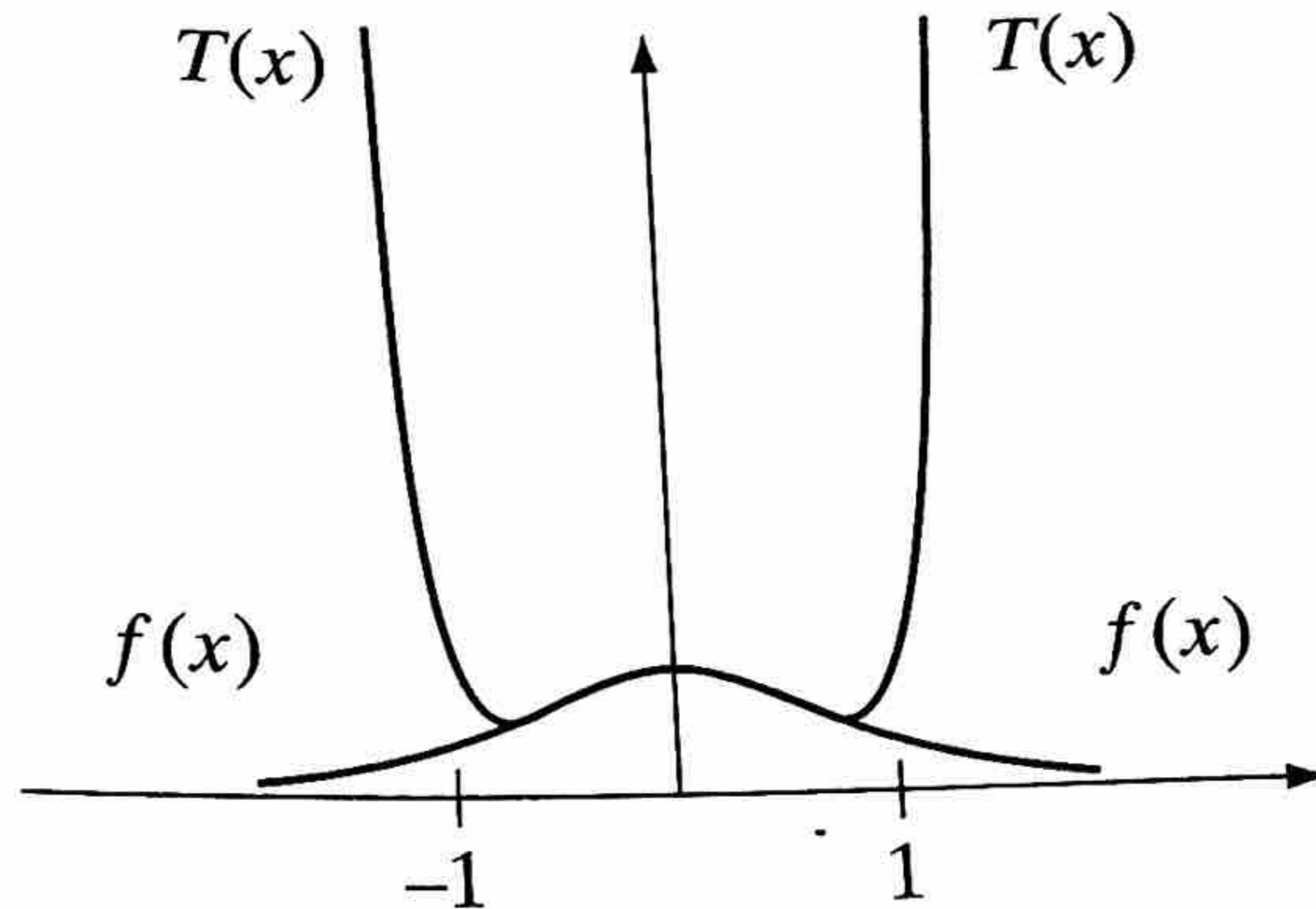
(B) 1.066

(C) 1.262

(D) 1.394

7. What is the radius of convergence of the series $\sum_{n=0}^{\infty} \frac{(x-1)^{2n}}{6^n}$?

- (A) $\frac{\sqrt{6}}{2}$
- (B) $\sqrt{6}$
- (C) $2\sqrt{6}$
- (D) 6



10. The figure above shows the graph of $y = f(x)$ and $y = T(x)$ where $T(x)$ is a Taylor poly for $f(x)$ centered at zero. Which of the following statements must be true?

- I. $T(0.5)$ is a good approximation for $f(0.5)$.
- II. $T(1.5)$ is a good approximation for $f(1.5)$.
- III. $T(0) = f(0)$

- (A) I only
- (B) III only
- (C) I and II only
- (D) I and III only

12. Which of the following improper integrals converge?

I. $\int_0^\infty e^{-x} dx$

II. $\int_0^1 \frac{1}{x^2} dx$

III. $\int_0^1 \frac{1}{\sqrt{x}} dx$

- (A) I only
- (B) III only
- (C) II and III only
- (D) I and III only

17. The first three nonzero terms in the Maclaurin series of xe^{-x} are

(A) $x - x^2 - \frac{x^3}{2!}$

(B) $x - x^2 + \frac{x^3}{2!}$

(C) $x + x^2 + \frac{x^3}{2!}$

(D) $1 - x + \frac{x^2}{2!}$

19. $\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^{2n}$ is

(A) $\frac{1}{3}$

(B) $\frac{1}{2}$

(C) 1

(D) 2

21. The Taylor series for $\frac{\sin(x^2)}{x^2}$ centered at $x = 0$ is

(A) $\sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$

(B) $\sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k+1)!}$

(C) $\sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k)!}$

(D) $\sum_{k=0}^{\infty} \frac{(-1)^k x^{4k}}{(2k+1)!}$

24. Which of the following series are convergent?

I. $1 + \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} + \cdots + \frac{1}{n\sqrt{n}} + \cdots$

II. $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \cdots + \frac{1}{n(n+1)} + \cdots$

III. $1 + \frac{1}{\ln 2} + \frac{1}{\ln 3} + \cdots + \frac{1}{\ln(n+1)} + \cdots$

- (A) I only
- (B) II only
- (C) I and II only
- (D) I, II, and III

25. For all x if $f(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n+1} x^{2n+1}}{(2n+1)!}$, then $f'(x) =$

(A) $\sum_{n=0}^{\infty} \frac{(-1)^{n+1} x^{2n}}{(2n+1)!}$

(B) $\sum_{n=0}^{\infty} \frac{(-1)^{n+1} x^{2n}}{(2n)!}$

(C) $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$

(D) $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n+1)!}$

29. For the series $\sum_{n=1}^{\infty} \frac{\sin(n)}{n^2}$ which of the following statements is true?

- (A) The series diverges.
- (B) The series converges absolutely.
- (C) The series converges conditionally
- (D) The series converges but not absolutely nor conditionally.

14. $\sum_{k=0}^{\infty} \left(-\frac{\pi}{3}\right)^k$ is

(A) $\frac{1}{1 - \frac{\pi}{3}}$

(B) $\frac{1}{1 + \frac{\pi}{3}}$

(C) $\frac{\frac{\pi}{3}}{1 + \frac{\pi}{3}}$

(D) divergent

27. $\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right)$ will

- (A) converge by the n^{th} term test.
- (B) converge by the Alternating Series Test.
- (C) diverge by the Ratio Test.
- (D) diverge by the Limit Comparison Test.

34. Let f be the function given by $f(x) = \int_0^x \cos \sqrt{t} dt$, $x \geq 0$.

Which of the following is the Taylor series of f about $x = 0$?

(A) $1 - \frac{x}{2} + \frac{x^2}{24} - \frac{x^3}{720} + \cdots$

(B) $x - \frac{x^2}{2} + \frac{x^4}{6} - \frac{x^6}{24} + \cdots$

(C) $x - \frac{x^2}{3} + \frac{x^4}{15} - \frac{x^5}{105} + \cdots$

(D) $x - \frac{x^2}{4} + \frac{x^3}{72} - \frac{x^4}{2880} + \cdots$

38. Let f be a function that is everywhere differentiable. The table below provides information about $f(x)$ and its first, second, and third derivatives for selected values of x .

x	$f(x)$	$f'(x)$	$f''(x)$	$f'''(x)$
0	4	2	1	0.50
1	5.15	2.50	1.25	0.75
2	7.20	3.50	1.75	0.85
3	10.50	5.25	2.10	1.00

Which of the following best approximates $f(2.2)$?

(A) $4 + 2(0.2) + \frac{1(0.2)^2}{2} + \frac{0.5}{6}(0.2)^3$

(B) $4 + 2(2.2) + \frac{1}{2}(2.2)^2 + \frac{0.50}{6}(2.2)^3$

(C) $7.20 + 3.50(2.2) + \frac{1.75}{2}(2.2)^2 + \frac{0.85}{6}(2.2)^3$

(D) $7.20 + 3.50(0.2) + \frac{1.75}{2}(0.2)^2 + \frac{0.85}{6}(0.2)^3$

39. Let E be the error when the Taylor polynomial $T(x) = x - \frac{x^3}{3!}$, centered about $x = 0$, is used to approximate $f(x) = \sin x$ at $x = 0.5$. Which of the following is true?

- (A) $0.0001 < |E| < 0.0003$
- (B) $0.0003 < |E| < 0.0005$
- (C) $0.0005 < |E| < 0.0007$
- (D) $0.0007 < |E|$

45. What is the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{(x-2)^n}{3^n(n+1)}$?

- (A) $-1 \leq x < 5$
- (B) $-1 < x \leq 5$
- (C) $-1 \leq x \leq 5$
- (D) $-1 < x < 5$

5. What are all values of x for which $\sum_{n=1}^{\infty} \frac{2^n x^n}{n}$ converges?

- (A) $-\frac{1}{2} \leq x \leq \frac{1}{2}$
- (B) $-\frac{1}{2} < x < \frac{1}{2}$
- (C) $-\frac{1}{2} < x \leq \frac{1}{2}$
- (D) $-\frac{1}{2} \leq x < \frac{1}{2}$

23. If $s_n = \left(\frac{(8-n)^{200}}{8^{n+2}} \right) \left(\frac{8^n}{(3-n^2)^{100}} \right)$, to what number does the sequence $\{s_n\}$ converge as $n \rightarrow \infty$?

(A) $-\frac{1}{8}$

(B) $-\frac{1}{64}$

(C) $\frac{1}{64}$

(D) $\frac{1}{8}$

39. Let $f(x)$ be a function that is differentiable for all x . The derivative of this function is given by the power series

$$f'(x) = 3x - \frac{9x^3}{2} + \frac{81x^5}{40} - \frac{3x^7}{60} + \dots$$

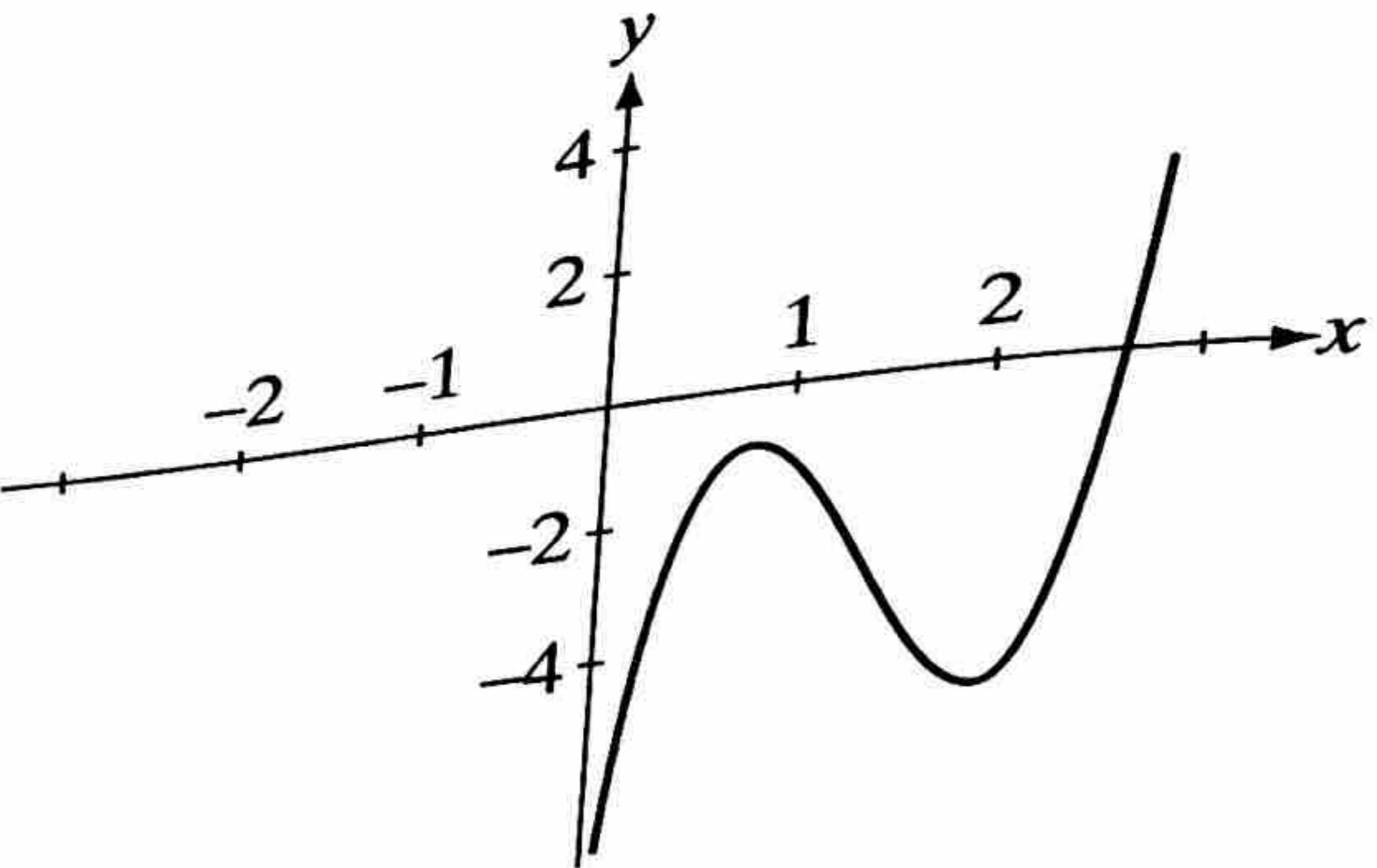
If $f(0) = 2$, then $f(x) =$

(A) $2 + 3x - \frac{9x^3}{2} + \frac{81x^5}{40} - \frac{3x^7}{60} + \dots$

(B) $\frac{3x^2}{2} - \frac{9x^4}{8} + \frac{27x^6}{80} - \frac{3x^8}{480} + \dots$

(C) $2 - \frac{3x^2}{2} + \frac{9x^4}{8} - \frac{27x^6}{80} + \frac{3x^8}{480} + \dots$

(D) $2 + \frac{3x^2}{2} - \frac{9x^4}{8} + \frac{27x^6}{80} - \frac{3x^8}{480} + \dots$



44. The graph above shows a function f with a relative minimum at $x = 2$. The approximation of $f(x)$ near $x = 2$ using a second-degree Taylor polynomial centered about $x = 2$ is given by $a + b(x - 2) + c(x - 2)^2$.

Which of the following is true about a , b , and c ?

- (A) $a < 0, b = 0, c > 0$
- (B) $a > 0, b = 0, c < 0$
- (C) $a < 0, b > 0, c > 0$
- (D) $a > 0, b = 0, c > 0$

36. If $\sum_{n=1}^{\infty} |a_n|$ converges, then which of the following is true?

- I. $\sum_{n=1}^{\infty} a_n$ converges.
- II. $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
- III. $\sum_{n=1}^{\infty} -a_n$ converges.

- (A) I only
- (B) II only
- (C) III only
- (D) I, II, and III

38. Let f be a function whose seventh derivative is $f^{(7)}(x) = 10,000 \cos x$ where $x = 1$ is in the interval of convergence of the power series for this function. Using the Lagrange error bound the Taylor polynomial of degree six centered at $x = 0$ will approximate $f(1)$ with an error of not more than

(A) 1.98×10^{-4} (B) 3.21×10^{-2} (C) 1.072 (D) 1.984

Let $f(x)$ be a function whose Taylor series converges for all x . If $|f^{(n)}(x)| < 1$ where $f^{(n)}(x)$ is the n^{th} derivative of $f(x)$, what is the minimum number of terms of the Taylor series centered at $x = 1$ necessary to approximate $f(1.2)$ with a Lagrange error less than 0.00001 ?

- (A) Three
- (B) Four
- (C) Five
- (D) Six

40. Let $T(x) = \sum_{k=0}^{\infty} \left(\frac{1}{2}\right)^k \frac{(x-3)^k}{k!}$ be the Taylor series for a function f .

What is the value of $f^{(10)}(3)$, the tenth derivative of f at $x = 3$?

- (A) 5.382×10^{-10}
- (B) 2.691×10^{-10}
- (C) 9.766×10^{-4}
- (D) 4.883×10^{-4}

43. What is the approximate value of $\cos\left(\frac{1}{2}\right)$ obtained by using a fourth-degree Taylor polynomial for $\cos x$ about $x = 0$?

(A) $\frac{1}{2} - \frac{1}{24} + \frac{1}{640}$

(B) $1 - \frac{1}{4} + \frac{1}{16}$

(C) $1 - \frac{1}{8} + \frac{1}{64}$

(D) $1 - \frac{1}{8} + \frac{1}{384}$